Inhibition of alpha-glucosidase I of the glycoprotein-processing enzymes by 6-O-butanoyl castanospermine (MDL 28,574) and its consequences in human immunodeficiency virus-infected T cells

Author:

Taylor D L1,Kang M S1,Brennan T M1,Bridges C G1,Sunkara P S1,Tyms A S1

Affiliation:

1. Marion Merrell Dow Research Institute Laboratories, Medical Research Council Collaborative Centre, London, United Kingdom.

Abstract

The 6-O-butanoyl derivative of castanospermine (MDL 28,574) was previously shown to be approximately 30-fold more potent than the naturally occurring molecule at inhibiting the replication of human immunodeficiency virus (HIV) (D. L. Taylor, P. S. Sunkara, P. S. Liu, M. S. Kang, T. L. Bowlin, and A. S. Tyms, AIDS 5:693-698, 1991). We now report that consistent with its improved anti-HIV activity, MDL 28,574 is more effective (50% inhibitory concentration [IC50], 20 microM) than the parent molecule (IC50, 254 microM) at causing the accumulation of glucosylated oligosaccharides in HIV-infected cells by inhibition of glycoprotein processing. These were predominantly of the glucose 3 type, as determined by P4 Bio-Gel analysis after digestion with purified alpha-glucosidase I, indicating that, intracellularly, this enzyme is the major target for inhibition. MDL 28,574, however, was less active (IC50, 1.27 microM) than castanospermine (IC50, 0.12 microM) against the mutual target enzyme, cellular alpha-glucosidase I, in a cell-free assay system. The increased effects of MDL 28,574 against alpha-glucosidase I in cell culture were attributed to the improved cellular uptake of the more lipophilic derivative. Inhibition of this enzyme activity in HIV-infected H9 cells impaired viral glycoprotein processing and resulted in the expression of abnormally configured gp120. This did not affect virus production, but the virions had decreased infectivity which was partially related to a reduced ability to bind to CD4+ T cells.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3