Biochemistry and Regulation of a Novel Escherichia coli K-12 Porin Protein, OmpG, Which Produces Unusually Large Channels

Author:

Fajardo Daniel A.1,Cheung Joyce2,Ito Chikako3,Sugawara Etsuko3,Nikaido Hiroshi3,Misra Rajeev12

Affiliation:

1. Department of Microbiology1 and

2. Molecular and Cellular Biology Program,2 Arizona State University, Tempe, Arizona 85287-2701, and

3. Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-32063

Abstract

ABSTRACT A novel porin, OmpG, is produced in response to a chromosomal mutation termed cog-192 . Molecular characterization of cog-192 revealed that it is a large chromosomal deletion extending from the 3′ end of pspA through to the 5′ end of an open reading frame located immediately upstream of ompG . As a result of this 13.1-kb deletion, the expression of ompG was placed under the control of the pspA promoter. Characterization of OmpG revealed that it is quite different from other porins. Proteoliposome swelling assays showed that OmpG channels were much larger than those of the OmpF and OmpC porins, with an estimated limited diameter of about 2 nm. The channel lacked any obvious solute specificity. The folding model of OmpG suggests that it is the first 16-stranded β-barrel porin that lacks the large external loop, L3, which constricts the channels of other nonspecific and specific porins. Consistent with the folding model, circular dichroism showed that OmpG contains largely a β-sheet structure. In contrast to other Escherichia coli porins, there is no evidence that OmpG exists as stable oligomers. Although ompG DNA was present in all E. coli strains examined so far, its expression under laboratory conditions was seen only due to rare chromosomal mutations. Curiously, OmpG was constitutively expressed, albeit at low levels, in Salmonella , Shigella , and Pseudomonas species.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 86 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3