Posttranscriptional Modifications in 16S and 23S rRNAs of the Archaeal Hyperthermophile Sulfolobus solfataricus

Author:

Noon Kathleen R.1,Bruenger Eveline1,McCloskey James A.12

Affiliation:

1. Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112,1 and

2. Department of Biochemistry, University of Utah, Salt Lake City, Utah 841322

Abstract

ABSTRACT Posttranscriptional modification is common to many types of RNA, but the majority of information concerning structure and function of modification is derived principally from tRNA. By contrast, less is known about modification in rRNA in spite of accumulating evidence for its direct participation in translation. The structural identities and approximate molar levels of modifications have been established for 16S and 23S rRNAs of the archaeal hyperthermophile Sulfolobus solfactaricus by using combined chromatography-mass spectrometry-based methods. Modification levels are exceptionally high for prokaryotic organisms, with approximately 38 modified sites in 16S rRNA and 50 in 23S rRNA for cells cultured at 75°C, compared with 11 and 23 sites, respectively, in Escherichia coli . We structurally characterized 10 different modified nucleosides in 16S rRNA, 64% (24 residues) of which are methylated at O-2′ of ribose, and 8 modified species in 23S rRNA, 86% (43 residues) of which are ribose methylated, a form of modification shown in earlier studies to enhance stability of the polynucleotide chain. From cultures grown at progressively higher temperatures, 60, 75, and 83°C, a slight trend toward increased ribose methylation levels was observed, with greatest net changes over the 23°C range shown for 2′- O -methyladenosine in 16S rRNA (21% increase) and for 2′- O -methylcytidine (24%) and 2′- O -methylguanosine (22%) in 23S rRNA. These findings are discussed in terms of the potential role of modification in stabilization of rRNA in the thermal environment.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3