Human Cytomegalovirus pp28 (UL99) Localizes to a Cytoplasmic Compartment Which Overlaps the Endoplasmic Reticulum-Golgi-Intermediate Compartment

Author:

Sanchez Veronica1,Sztul Elizabeth2,Britt William J.13

Affiliation:

1. Departments of Pediatrics,1

2. Cell Biology,2 and

3. Microbiology,3 The University of Alabama at Birmingham, Birmingham, Alabama

Abstract

ABSTRACT Although the assembly of herpesviruses has remained an active area of investigation, considerable controversy continues to surround the cellular location of tegument and envelope acquisition. This controversy is particularly evident when the proposed pathways for α- and β-herpesvirus assembly are compared. We have approached this aspect of human cytomegalovirus (HCMV) assembly, specifically, envelopment, by investigating the intracellular trafficking of viral tegument proteins which localize in the cytoplasms of infected cells. In this study we have demonstrated that the virion tegument protein pp28 (UL99), a true late protein, was membrane associated as a result of myristoylation. A mutation in this protein which prevented incorporation of [ 3 H]myristic acid also altered the detergent solubility and intracellular distribution of the protein when it was expressed in transfected cells. Using a panel of markers for intracellular compartments, we could localize the expression of wild-type pp28 to an intracellular compartment which colocalized with the endoplasmic reticulum-Golgi-intermediate compartment (ERGIC), a dynamic compartment of the secretory pathway which interfaces with both the ER and Golgi apparatus. The localization of this viral tegument protein within an early secretory compartment of the cell provided further evidence that the assembly of the HCMV tegument likely includes a cytoplasmic phase. Because pp28 has been shown to be localized to a cytoplasmic assembly compartment in HCMV-infected cells, our findings also suggested that viral tegument protein interactions within the secretory pathway may have an important role in the assembly of the virion.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3