Impact of Real-Time Therapeutic Drug Monitoring on the Prescription of Antibiotics in Burn Patients Requiring Admission to the Intensive Care Unit

Author:

Fournier A.12ORCID,Eggimann P.3,Pantet O.3,Pagani J. L.3,Dupuis-Lozeron E.4,Pannatier A.1,Sadeghipour F.12,Voirol P.12,Que Y.-A.5

Affiliation:

1. Service of Pharmacy, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland

2. School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland

3. Service of Intensive Care Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland

4. Unit of Population Epidemiology, Department of Community Medicine, Primary Care and Emergency Medicine, Geneva University Hospitals, Geneva, Switzerland

5. Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland

Abstract

ABSTRACT As pharmacokinetics after burn trauma are difficult to predict, we conducted a 3-year prospective, monocentric, randomized, controlled trial to determine the extent of under- and overdosing of antibiotics and further evaluate the impact of systematic therapeutic drug monitoring (TDM) with same-day real-time dose adaptation to reach and maintain antibiotic concentrations within the therapeutic range. Forty-five consecutive burn patients treated with antibiotics were prospectively screened. Forty fulfilled the inclusion criteria; after one patient refused to participate and one withdrew consent, 19 were randomly assigned to an intervention group (patients with real-time antibiotic concentration determination and subsequent adaptations) and 19 were randomly assigned to a standard-of-care group (patients with antibiotic administration at the physician's discretion without real-time TDM). Seventy-three infection episodes were analyzed. Before the intervention, only 46/82 (56%) initial trough concentrations fell within the range. There was no difference between groups in the initial trough concentrations (adjusted hazard ratio = 1.39 [95% confidence interval {CI}, 0.81 to 2.39], P = 0.227) or the time to reach the target. However, thanks to real-time dose adjustments, the trough concentrations of the intervention group remained more within the predefined range (57/77 [74.0%] versus 48/85 [56.5%]; adjusted odd ratio [OR] = 2.34 [95% CI, 1.17 to 4.81], P = 0.018), more days were spent within the target range (193 days/297 days on antibiotics [65.0%] versus 171 days/311 days in antibiotics [55.0%]; adjusted OR = 1.64 [95% CI, 1.16 to 2.32], P = 0.005), and fewer results were below the target trough concentrations (25/118 [21.2%] versus 44/126 [34.9%]; adjusted OR = 0.47 [95% CI, 0.26 to 0.87], P = 0.015). No difference in infection outcomes was observed between the study groups. Systematic TDM with same-day real-time dose adaptation was effective in reaching and maintaining therapeutic antibiotic concentrations in infected burn patients, which prevented both over- and underdosing. A larger multicentric study is needed to further evaluate the impact of this strategy on infection outcomes and the emergence of antibiotic resistance during long-term burn treatment. (This study was registered with the ClinicalTrials.gov platform under registration no. NCT01965340 on 27 September 2013.)

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

Reference42 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3