Critical binding and regulatory interactions between Ras and Raf occur through a small, stable N-terminal domain of Raf and specific Ras effector residues.

Author:

Chuang E,Barnard D,Hettich L,Zhang X F,Avruch J,Marshall M S

Abstract

Genetic and biochemical evidence suggests that the Ras protooncogene product regulates the activation of the Raf kinase pathway, leading to the proposal that Raf is a direct mitogenic effector of activated Ras. Here we report the use of a novel competition assay to measure in vitro the relative affinity of the c-Raf-1 regulatory region for Ras-GTP, Ras-GDP, and 10 oncogenic and effector mutant Ras proteins. c-Raf-1 associates with normal Ras and the oncogenic V12 and L61 forms of Ras with equal affinity. The moderately transforming mutant Ras[E30K31] also bound to the c-Raf-1 regulatory region with normal affinity. Transformation-defective Ras effector mutants Ras[N33], Ras[S35], and Ras[N38] bound poorly. In contrast, the transformation defective Ras[G26I27] and Ras[E45] mutants bound to the c-Raf-1 regulatory region with nearly wild-type affinity. A stable, high-affinity Ras-binding region of c-Raf-1 was mapped to a 99-amino-acid subfragment of the first 257 residues. The smallest Ras-binding region identified consisted of N-terminal residues 51 to 131, although stable expression of the domain and high-affinity binding were improved by the presence of residues 132 to 149. Deletion of the Raf zinc finger region did not reduce Ras-binding affinity, while removal of the first 50 amino acids greatly increased affinity. Phosphorylation of Raf[1-149] by protein kinase A on serine 43 resulted in significant inhibiton of Ras binding. demonstrating that the mechanism of cyclic AMP downregulation results through structural changes occurring exclusively in this small Ras-binding domain.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 170 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3