Sequences controlling transcription of the Chlamydomonas reinhardtii beta 2-tubulin gene after deflagellation and during the cell cycle.

Author:

Davies J P,Grossman A R

Abstract

In Chlamydomonas reinhardtii, transcripts from the beta 2-tubulin gene (tubB2), as well as those from other tubulin-encoding genes, accumulate immediately after flagellar excision as well as at a specific time in the cell cycle. Control of tubB2 transcript accumulation following deflagellation is regulated, at least partially, at the transcriptional level. We have fused the tubB2 promoter to the arylsulfatase (ars) reporter gene, introduced this construct into C. reinhardtii, and compared expression of the chimeric gene with that of the endogenous tubB2 gene. After flagellar excision, transcripts from the tubB2/ars chimeric gene accumulate with kinetics similar to those of transcripts from the endogenous tubB2 gene. The tubB2/ars transcripts also accumulate in a cell cycle-specific manner; however, chimeric transcripts are more abundant earlier in the cell cycle than the endogenous tubB2 transcripts. To elucidate transcriptional control of tubB2, we have mutated or removed sequences in the tubB2 promoter and examined the effect on transcription. The tubB2 promoter shares features with the promoters of other tubulin-encoding genes; these include a GC-rich region between the TATA box and the transcription initiation site and multiple copies of a 10-bp sequence motif that we call the tub box. The tubB2 gene contains seven tub box motifs. Changing the GC-rich region to an AT-rich region or removing three of the seven tub box motifs did not significantly affect transcription of the chimeric gene. However, removing four or five tub box motifs prevented increased transcription following deflagellation and diminished cell cycle-regulated transcription from the tubB2 promoter.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3