Affiliation:
1. Department of Microbiology, University of Minnesota, Minneapolis, Minnesota 55455
Abstract
Ribonucleic acid (RNA) and protein synthesis during myxospore germination were examined. When RNA synthesis was inhibited more than 90% by either actinomycin D (Act D) or rifampin, germination was prevented. The data were consistent with the interpretation that rifampin did not interfere with protein synthesis in any way other than by inhibition of messenger RNA formation. Act D concentrations as high as 20 μg/ml did not totally inhibit RNA synthesis. In the presence of 8 μg of Act D/ml, germinating myxospores synthesized transfer RNA, 16
S
RNA, and 23
S
RNA. Evidence was presented which indicated that messenger RNA was also synthesized early in the germination period both in the presence and absence of 8 μg of Act D/ml. One explanation for the escape synthesis of RNA in germinating myxospores is that Act D exerts a differential effect on the transcription of larger versus smaller cistrons, the latter having a lower probability of binding Act D. We have found that in the presence of 8 μg of Act D/ml, escape RNA synthesis in myxospores was 25% for 23
S
RNA, 55% for 16
S
RNA, and more than 90% for 4
S
RNA. We have shown that germination of myxospores requires both RNA and protein synthesis during the first 25 to 35 min in germination medium. This finding does not support the earlier suggestion by Ramsey and Dworkin that a stable germination messenger RNA is required for germination of the myxospores of
Myxococcus xanthus
.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献