Comparison of the Antibody Repertoire Generated in Healthy Volunteers following Immunization with a Monomeric Recombinant gp120 Construct Derived from a CCR5/CXCR4-Using Human Immunodeficiency Virus Type 1 Isolate with Sera from Naturally Infected Individuals

Author:

Beddows Simon1,Lister Simon1,Cheingsong Rachanee1,Bruck Claudine2,Weber Jonathan1

Affiliation:

1. Department of GU Medicine and Communicable Diseases, Imperial College School of Medicine at St. Mary’s, London W2 1PG, United Kingdom,1 and

2. R&D Extramural Research, SmithKline Beecham Biologicals, 1330 Rixensart, Belgium2

Abstract

ABSTRACT We have characterized sera from healthy volunteers immunized with a monomeric recombinant gp120 (rgp120) derived from a CCR5/CXCR4 (R5X4)-using subtype B isolate of human immunodeficiency virus type (HIV-1), HIV-1 W61D , in comparison to sera from long-term HIV-1-infected individuals, using homologous reagents. Sera from vaccinees and HIV-1 positive subjects had similar binding titers to native monomeric rgp120 W61D and showed a similar titer of antibodies inhibiting the binding of soluble CD4 (sCD4) to rgp120 W61D . However, extensive peptide binding studies showed that the overall pattern of recognition of vaccinee and HIV-1-positive sera is different, with vaccinee sera displaying a wider and more potent recognition of linear V1/V2 and V3 domain epitopes. Neutralization of homologous HIV-1 W61D or heterologous HIV-1 M2424/4 peripheral blood mononuclear cell (PBMC)-derived virus lines by vaccinee sera could be achieved, but only after adaptation of the viruses to T-cell lines and was quickly lost on readaptation to growth in PBMC. Sera from HIV-positive individuals were able to neutralize both PBMC-grown and T-cell line-adapted viruses. Interestingly, rgp120 W61D was recognized by monoclonal antibodies previously shown to neutralize primary HIV-1 isolates. The use of very potent adjuvants and R5X4 rgp120 led to an antibody response equivalent in binding activity and inhibition of binding of sCD4 to gp120 to that of HIV-positive individuals but did not lead to the induction of antibodies capable of neutralizing PBMC-grown virus.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3