Highly Purified Human Immunodeficiency Virus Type 1 Reveals a Virtual Absence of Vif in Virions

Author:

Dettenhofer Markus1,Yu Xiao-Fang1

Affiliation:

1. Department of Molecular Microbiology and Immunology, Johns Hopkins University School of Hygiene and Public Health, Baltimore, Maryland 21205

Abstract

ABSTRACT The vif gene of human immunodeficiency virus type 1 (HIV-1) is essential for the productive infection of primary blood-derived lymphocytes, macrophages, and certain human T-cell lines. It has been shown that Vif is associated with HIV-1 virions purified by sucrose density-equilibrium gradient analysis. However, the specificity of Vif incorporation into virions has not been determined. Moreover, recent studies have demonstrated that standard HIV-1 particle preparations created with sucrose density-equilibrium gradients are contaminated with cell-derived microvesicles. Here we demonstrate, as previously reported, that Vif cosediments with HIV-1 particles in sucrose density-equilibrium gradient analysis. However, we also found that, when Vif was expressed in the absence of all other HIV-1-encoded gene products and then isolated by sucrose density-equilibrium gradient centrifugation from extracellular supernatants, its sedimentation pattern was largely unaltered, suggesting that Vif can be secreted from cells. Using a newly developed OptiPrep velocity gradient method, we were able to physically separate most of the extracellular Vif from the HIV-1 virions without disrupting the infectivity of the virus. By titrating serial dilutions of purified Vif and Gag against the viral peak fraction in the OptiPrep gradient, we demonstrate that <1.0 Vif molecule per virion was present. This study shows that Vif is not significantly present in HIV-1 virions, a finding which is consistent with the idea that Vif functions predominantly in the virus-producing cells during virus assembly. The OptiPrep velocity gradient technique described here could be an easy and rapid way to purify HIV and other enveloped viruses from microvesicles and/or cell debris.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3