Mutational analysis of the core, spacer, and initiator regions of vaccinia virus intermediate-class promoters

Author:

Baldick C J1,Keck J G1,Moss B1

Affiliation:

1. Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892.

Abstract

Activation of vaccinia virus late gene transcription is dependent on DNA replication and the expression of three genes: A1L, A2L, and G8R (J. G. Keck, C. J. Baldick, Jr., and B. Moss, Cell 61:801-809, 1990). To fully characterize the promoter elements of these trans-activator genes, we prepared more than 140 plasmid vectors containing natural and mutated DNA segments ligated to the Escherichia coli lacZ or chloramphenicol acetyltransferase reporter gene. Expression of the reporter genes occurred when the plasmids were transfected into vaccinia virus-infected cells and was enhanced when DNA replication was prevented, indicating that the A1L, A2L, and G8R promoters belong to the intermediate regulatory class. Deletional mutagenesis demonstrated that the regulatory elements of all three promoters extended between 20 and 30 nucleotides upstream of their RNA start sites. Single-base substitutions of the G8R promoter revealed two critical elements located from -26 to -13 (the core element) and -1 to +3 (the initiator element). Mutations in these regions drastically affected expression, as determined by beta-galactosidase and mRNA analyses. Additional mutations defined the TAAA sequence as the critical initiator element. The length, but not the nucleotide sequence, of the segment between the core and initiator regions was crucial. The requirement for the spacer to be 10 or 11 nucleotides was consistent with a single turn of a double helix. The A1L and A2L promoters resembled the G8R promoter, and mutations in the conserved bases had the predicted effects on expression. We concluded that the three intermediate promoters are composed of a 14-bp A+T-rich core sequence separated by one turn of the double helix from the TAAA initiator element.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3