The v-rel oncogene: insights into the mechanism of transcriptional activation, repression, and transformation

Author:

Walker W H1,Stein B1,Ganchi P A1,Hoffman J A1,Kaufman P A1,Ballard D W1,Hannink M1,Greene W C1

Affiliation:

1. Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710.

Abstract

The v-rel oncogene product from the avian reticuloendotheliosis virus strain T corresponds to a member of the Rel-related family of enhancer-binding proteins that includes both the mammalian 50- and 65-kDa subunits of the NF-kappa B transcription factor complex. However, in contrast to NF-kappa B, v-Rel has been shown to function as a dominant-negative repressor of kappa B-dependent transcription in many mature cell types. We now demonstrate that a highly conserved motif within the Rel homology domain of v-Rel containing a consensus protein kinase A phosphorylation site is required for DNA binding, transcriptional repression, and cellular transformation mediated by this oncoprotein. However, replacement of the serine phosphate acceptor within the protein kinase A site with an alanine did not alter any of these functions of v-Rel, suggesting that phosphorylation at this site is not central to the regulation of this oncogene product. Rather, the inactive mutations appear to identify a functional domain within v-Rel required for these various biological activities. It is notable that these same mutations do not impair the ability of v-Rel to heterodimerize with the 50-kDa subunit of NF-kappa B, suggesting that v-Rel-mediated transcriptional repression likely involves direct nuclear blockade of the kappa B enhancer rather than indirect alterations in the composition of preformed cytoplasmic NF-kappa B complexes. Paradoxically, when introduced into undifferentiated F9 cells, v-Rel functions as a kappa B-specific transcriptional activator rather than as a dominant-negative repressor. These stimulatory effects of v-Rel require both the conserved protein kinase A phosphorylation site and additional unique C-terminal sequences not needed for v-Rel-mediated repression in mature cells. Retinoic acid-induced differentiation of these F9 cells restores the repressor function of v-Rel. These opposing biological actions of v-Rel occurring in cells at distinct stages of differentiation may have important implications for the mechanism of v-Rel-mediated transformation occurring in avian splenocytes.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Reference72 articles.

1. Cloning, structure, and expression of the mitochondrial cytochrome P-450 sterol 26-hydroxylase, a bile acid biosynthetic enzyme;Andersson S.;J. Biol. Chem.,1989

2. Activation of DNAbinding activity in an apparently cytoplasmic precursor of the NF-KB transcription factor;Baeuerle P.;Cell,1988

3. IKB: a specific inhibitor of the NF-KB transcription factor;Baeuerle P.;Science,1988

4. Activation of the interleukin-2 receptor a gene: regulatory role for DNA-protein interactions flanking the KB enhancer;Ballard D. W.;New Biol.,1989

5. HTLV-I Tax induces cellular proteins that activate the KB element in the IL-2 receptor a gene;Ballard D. W.;Science,1988

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3