Mg2+ induces a sharp and reversible transition in U1 and U2 small nuclear ribonucleoprotein configurations

Author:

Reveillaud I,Lelay-Taha M N,Sri-Widada J,Brunel C,Jeanteur P

Abstract

When U1 and U2 small nuclear ribonucleoproteins (snRNPs) purified by a procedure which preserves their immunoprecipitability by autoimmune antibodies (Hinterberger et al., J. Biol. Chem. 258:2604-2613, 1983), were submitted to extensive digestion with micrococcal nuclease, we found that their degradation pattern was sharply dependent upon magnesium concentration, indicating that they undergo a profound structural modification. At low Mg2+ (less than or equal to 5 mM), both particles only exhibit a core-resistant structure previously identified as being common to all but U6 snRNAs (Liautard et al., J. Mol. Biol. 162: 623-643, 1982). At high Mg2+ (greater than or equal to 7 mM), U1 and U2 snRNPs behave differently from one another. In U1 snRNP, most U1 snRNA sequence is protected, except for the 10 5'-terminal nucleotides presumably involved in splicing and a short sequence between nucleotides 102 and 108. Another region spanning nucleotides 60 to 79 is only weakly protected. This structural modification was demonstrated to be reversible. In U2 snRNP, the U2 snRNA sequence remains exposed in its 5' part up to nucleotide 92, and the 3'-terminal hairpin located outside the core structure becomes protected.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3