Towards a Biocatalyst for ( S )-Styrene Oxide Production: Characterization of the Styrene Degradation Pathway of Pseudomonas sp. Strain VLB120

Author:

Panke Sven1,Witholt Bernard1,Schmid Andreas1,Wubbolts Marcel G.1

Affiliation:

1. Institute of Biotechnology, Swiss Federal Institute of Technology Zurich, CH-8093 Zurich, Switzerland

Abstract

ABSTRACT In order to design a biocatalyst for the production of optically pure styrene oxide, an important building block in organic synthesis, the metabolic pathway and molecular biology of styrene degradation in Pseudomonas sp. strain VLB120 was investigated. A 5.7-kb Xho I fragment, which contained on the same strand of DNA six genes involved in styrene degradation, was isolated from a gene library of this organism in Escherichia coli by screening for indigo formation. T7 RNA polymerase expression experiments indicated that this fragment coded for at least five complete polypeptides, StyRABCD, corresponding to five of the six genes. The first two genes encoded the potential carboxy-terminal part of a sensor, named StySc, and the complete response regulator StyR. Fusion of the putative styAp promoter to a lacZ reporter indicated that StySc and StyR together regulate expression of the structural genes at the transcriptional level. Expression of styS c R also alleviated a block that prevented translation of styA mRNA when a heterologous promoter was used. The structural genes styA and styB produced a styrene monooxygenase that converted styrene to styrene oxide, which was then converted to phenylacetaldehyde by StyC. Sequence homology analysis of StyD indicated a probable function as a phenylacetaldehyde dehydrogenase. To assess the usefulness of the enzymes for the production of enantiomerically pure styrene oxide, we investigated the enantiospecificities of the reactions involved. Kinetic resolution of racemic styrene oxide by styrene oxide isomerase was studied with E. coli recombinants carrying styC , which converted styrene oxide at a very high rate but with only a slight preference for the S enantiomer. However, recombinants producing styrene monooxygenase catalyzed the formation of ( S )-styrene oxide from inexpensive styrene with an excellent enantiomeric excess of more than 99% at rates up to 180 U g (dry weight) of cells −1 .

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3