Author:
Dieken E S,Meese E U,Miesfeld R L
Abstract
Glucocorticoid induction of cell death (apoptosis) in mouse lymphoma S49 cells has long been studied as a molecular genetic model of steroid hormone action. To better understand the transcriptional control of glucocorticoid-induced S49 cell death, we isolated and characterized glucocorticoid receptor (GR) cDNA from two steroid-resistant nti S49 mutant cell lines (S49.55R and S49.143R) and the wild-type parental line (S49.A2). Our data reveal that nti GR transcripts encode intact steroid- and DNA-binding domains but lack 404 amino-terminal residues as a result of aberrant RNA splicing between exons 1 and 3. Results from transient cotransfection experiments into CV1 cells using nti receptor expression plasmids and a glucocorticoid-responsive reporter gene demonstrated that the truncated nti receptor exhibits a reduced transcriptional regulatory activity. Gene fusions containing portions of both the wild-type and the nti GR-coding sequences were constructed and used to functionally map the nti receptor mutation. We found that the loss of the modulatory domain alone is sufficient to cause the observed defect in nti transcriptional transactivation. These results support the proposal that glucocorticoid-induced S49 cell death requires GR sequences which have previously been shown to be required for transcriptional regulation, suggesting that steroid-regulated apoptosis is controlled at the level of gene expression.
Publisher
American Society for Microbiology
Subject
Cell Biology,Molecular Biology
Cited by
45 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献