Induction of a chicken small heat shock (stress) protein: evidence of multilevel posttranscriptional regulation.

Author:

Edington B V,Hightower L E

Abstract

A novel form of regulation of expression of a vertebrate heat shock gene is described. A cDNA clone encoding human Hsp27 was shown to specifically recognize chicken Hsp23 RNA by Northern (RNA) blot analysis and hybrid-select translation. This probe was then used to measure chicken hsp23 gene activity in control and heat-stressed cells. The hsp23 gene(s) was transcriptionally active in non-heat-stressed cells, and its rate of transcription did not increase significantly upon heat shock. Cytoplasmic Hsp23 mRNA, which was metabolically very stable in nonstressed cells, underwent a fourfold increase in amount after a 1-h heat shock, resulting in a twofold increase in Hsp23 mRNA in polysomes. Hsp23 mRNA was relatively abundant and translationally active even in non-heat-shocked cells. Taken together, these data implicated posttranscriptional nuclear events as an important control point for induction of Hsp23 RNA transcripts. The protein half-life of Hsp23 increased from approximately 2 h in control cultures to 13 h in heat-shocked cells, revealing a second major control point. Hsp23 which was synthesized prior to heat shock also increased in stability and contributed to the overall accumulation of Hsp23 in heat-shocked cells. Cycloheximide had no effect on this change in Hsp23 half-life, while dactinomycin blocked the stabilization of Hsp23, suggesting a need for newly synthesized RNA. These data indicated that stabilization of Hsp23 protein and posttranscriptional nuclear events resulting in increased production of Hsp23 mRNA were primarily responsible for a 13-fold increase in the accumulation of newly synthesized Hsp23 after 1 h of heat shock. The regulation of the hsp23 gene is discussed in comparison with several other posttranscriptionally regulated genes, including the proto-oncogene c-fos, the developmentally regulated chicken delta-crystallin gene, and regulation of cellular gene expression by the proto-oncogene c-myc.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3