Metabolic Flux Ratio Analysis of Genetic and Environmental Modulations of Escherichia coli Central Carbon Metabolism

Author:

Sauer Uwe1,Lasko Daniel R.1,Fiaux Jocelyne2,Hochuli Michel2,Glaser Ralf2,Szyperski Thomas2,Wüthrich Kurt2,Bailey James E.1

Affiliation:

1. Institut für Biotechnologie1 and

2. Institut für Molekularbiologie und Biophysik,2 ETH Zürich, CH-8093 Zürich, Switzerland

Abstract

ABSTRACT The response of Escherichia coli central carbon metabolism to genetic and environmental manipulation has been studied by use of a recently developed methodology for metabolic flux ratio (METAFoR) analysis; this methodology can also directly reveal active metabolic pathways. Generation of fluxome data arrays by use of the METAFoR approach is based on two-dimensional 13 C- 1 H correlation nuclear magnetic resonance spectroscopy with fractionally labeled biomass and, in contrast to metabolic flux analysis, does not require measurements of extracellular substrate and metabolite concentrations. METAFoR analyses of E. coli strains that moderately overexpress phosphofructokinase, pyruvate kinase, pyruvate decarboxylase, or alcohol dehydrogenase revealed that only a few flux ratios change in concert with the overexpression of these enzymes. Disruption of both pyruvate kinase isoenzymes resulted in altered flux ratios for reactions connecting the phosphoenolpyruvate (PEP) and pyruvate pools but did not significantly alter central metabolism. These data indicate remarkable robustness and rigidity in central carbon metabolism in the presence of genetic variation. More significant physiological changes and flux ratio differences were seen in response to altered environmental conditions. For example, in ammonia-limited chemostat cultures, compared to glucose-limited chemostat cultures, a reduced fraction of PEP molecules was derived through at least one transketolase reaction, and there was a higher relative contribution of anaplerotic PEP carboxylation than of the tricarboxylic acid (TCA) cycle for oxaloacetate synthesis. These two parameters also showed significant variation between aerobic and anaerobic batch cultures. Finally, two reactions catalyzed by PEP carboxykinase and malic enzyme were identified by METAFoR analysis; these had previously been considered absent in E. coli cells grown in glucose-containing media. Backward flux from the TCA cycle to glycolysis, as indicated by significant activity of PEP carboxykinase, was found only in glucose-limited chemostat culture, demonstrating that control of this futile cycle activity is relaxed under severe glucose limitation.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Reference43 articles.

1. Bachmann B. J. Derivations and genotypes of some mutant derivatives of Escherichia coli K-12 Escherichia coli and Salmonella: cellular and molecular biology 2nd ed. Neidhardt F. C. Curtiss R. III Ingraham J. L. Lin E. C. C. Low K. B. Magasanik B. Reznikoff W. S. Riley M. Schaechter M. Umbarger H. E. 1996 2460 2488 ASM Press Washington D.C.

2. Optimized recording of heteronuclear multidimensional NMR spectra using pulsed field gradients;Bax A.;J. Magn. Reson.,1992

3. Natural abundance nitrogen-15 NMR by enhanced heteronuclear spectroscopy

4. Control of metabolic flux in yeasts and fungi;Brown A. J. P.;Trends Biotechnol.,1997

5. Digital filtering with a sinusoidal window function: an alternative technique for resolution enhancement in FT NMR;DeMarco A.;J. Magn. Reson.,1976

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3