Mucosal Immunogenicity of a Holotoxin-Like Molecule Containing the Serine-Rich Entamoeba histolytica Protein (SREHP) Fused to the A 2 Domain of Cholera Toxin

Author:

Sultan Faisal1,Jin Ling-ling1,Jobling Michael G.2,Holmes Randall K.2,Stanley Samuel L.13

Affiliation:

1. Departments of Medicine1 and

2. Department of Microbiology, University of Colorado Health Sciences Center, Denver, Colorado 802622

3. Molecular Microbiology,3 Washington University School of Medicine, St. Louis, Missouri 63110, and

Abstract

ABSTRACT One strategy for the induction of mucosal immune responses by oral immunization is to administer the antigen in conjunction with cholera toxin. Cholera toxin consists of one A polypeptide (CTA) which is noncovalently linked to five B subunits (CTB) via the A 2 portion of the A subunit (CTA 2 ). Coupling of antigens to the nontoxic B subunit of cholera toxin may improve the immunogenicity of antigens by targeting them to GM1 ganglioside on M cells and intestinal epithelial cells. Here, we describe the construction of a translational fusion protein containing the serine-rich Entamoeba histolytica protein (SREHP), a protective amebic antigen, fused to a maltose binding protein (MBP) and to CTA 2 . When coexpressed in Escherichia coli with the CTB gene, these proteins assembled into a holotoxin-like chimera containing MBP-SREHP-CTA 2 and CTB. This holotoxin-like chimera (SREHP-H) inhibited the binding of cholera toxin to GM1 ganglioside. Oral vaccination of mice with SREHP-H induced mucosal immunoglobulin A (IgA) and serum IgG antiamebic antibodies and low levels of mucosal anti-CTB antibodies. Our studies confirm that the genetic coupling of antigens to CTA 2 and their coexpression in E. coli can produce holotoxin-like molecules that are mucosally immunogenic without the requirement for supplemental cholera toxin, and they establish the SREHP-H protein as a candidate for evaluation as a vaccine to prevent amebiasis.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3