Affiliation:
1. Department of Molecular and Cell Biology, The University of Texas at Dallas, Richardson, Texas 75083-0688
Abstract
SUMMARY
ς
54
has several features that distinguish it from other sigma factors in Escherichia coli: it is not homologous to other ς subunits, ς
54
-dependent expression absolutely requires an activator, and the activator binding sites can be far from the transcription start site. A rationale for these properties has not been readily apparent, in part because of an inability to assign a common physiological function for ς
54
-dependent genes. Surveys of ς
54
-dependent genes from a variety of organisms suggest that the products of these genes are often involved in nitrogen assimilation; however, many are not. Such broad surveys inevitably remove the ς
54
-dependent genes from a potentially coherent metabolic context. To address this concern, we consider the function and metabolic context of ς
54
-dependent genes primarily from a single organism, Escherichia coli, in which a reasonably complete list of ς
54
-dependent genes has been identified by computer analysis combined with a DNA microarray analysis of nitrogen limitation-induced genes. E. coli appears to have approximately 30 ς
54
-dependent operons, and about half are involved in nitrogen assimilation and metabolism. A possible physiological relationship between ς
54
-dependent genes may be based on the fact that nitrogen assimilation consumes energy and intermediates of central metabolism. The products of the ς
54
-dependent genes that are not involved in nitrogen metabolism may prevent depletion of metabolites and energy resources in certain environments or partially neutralize adverse conditions. Such a relationship may limit the number of physiological themes of ς
54
-dependent genes within a single organism and may partially account for the unique features of ς
54
and ς
54
-dependent gene expression.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology,Infectious Diseases
Cited by
235 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献