The Pre-S2 Domain of the Hepatitis B Virus Is Dispensable for Infectivity but Serves a Spacer Function for L-Protein-Connected Virus Assembly

Author:

Ni Yi1,Sonnabend Jessika1,Seitz Stefan1,Urban Stephan1

Affiliation:

1. Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, D-69120 Heidelberg, Germany

Abstract

ABSTRACT The envelope of the human hepatitis B virus (HBV) contains three membrane proteins (L, M, and S). They accomplish different functions in HBV infectivity and nucleocapsid envelopment. Infectivity determinants have been assigned to the N-terminal part of the pre-S1 domain of the L protein and the antigenic loop of the S domain in the L and/or S protein. Nucleocapsid envelopment requires a C-terminal sequence within pre-S1, including the five N-terminal amino acids of pre-S2 as part of the L protein. However, the role of the M protein and the pre-S2 domain of the L protein are not entirely understood. We addressed this question and analyzed assembly competence and infectivity of viruses that lack the M protein and, at the same time, carry alterations in the pre-S2 domain of L. These include deletions, in part frameshift mutations and a randomization of virtually the entire pre-S2 sequence. We found that the M protein is dispensable for HBV in vitro infectivity. Viruses that lack the M protein and contain a mostly randomized pre-S2 sequence assemble properly and are infectious in HepaRG cells and primary human hepatocytes. While deletions of 20 amino acids in the pre-S2 domain of L protein allowed the production of infectious virions, more extended deletions interfered with assembly. This indicates that the pre-S2 domain of the L protein serves an important role for virus assembly, presumably as a spacer that supports conformational changes of L protein but does not participate as part of the M protein or as a subdomain of the L protein in virus entry.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3