Affiliation:
1. Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
Abstract
ABSTRACT
Bacillus anthracis
can cause inhalational anthrax. Murine inhalational
B. anthracis
infections have two portals of entry, the nasal mucosa-associated lymphoid tissue (NALT) and the lumen of the lungs. Analysis of the dissemination from these sites is hindered because infections are asynchronous and asymptomatic until the hosts near death. To further understand and compare how
B. anthracis
disseminates from these two different environments, clonal analysis was employed using a library of equally virulent DNA-tagged clones of a luminescent Sterne strain. Luminescence was used to determine the origin of the infection and monitor the dissemination
in vivo
. The number of clones and their proportions in the portals of entry, lymph nodes draining the portals, and kidneys were analyzed. Clonal analysis indicated a bottleneck for both portals of entry, yet the extent and location of the reduction in represented clones differed between the routes. In NALT-based infections, all clones were found to germinate in the NALT, but they underwent a bottleneck as the infection spread to the cervical lymph node. However, lung-based infections underwent a bottleneck in a focal region of growth within the lung lumen and did not need to spread through the mediastinal lymph nodes to cause a systemic infection. Further, the average number of clones found in the kidney and the rate at which genetic drift was affecting the disseminated populations were significantly higher in lung-based infections. Collectively, the data suggested that differences in the host environment alter dissemination of
B. anthracis
depending on the site of initial colonization and growth.
Publisher
American Society for Microbiology
Subject
Infectious Diseases,Immunology,Microbiology,Parasitology
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献