Blocking of human immunodeficiency virus infection depends on cell density and viral stock age

Author:

Layne S P1,Merges M J1,Spouge J L1,Dembo M1,Nara P L1

Affiliation:

1. Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, New Mexico 87545.

Abstract

Quantitative infectivity assays were used to study how the blocking activity of soluble CD4 (sCD4) is affected by sCD4 concentration, target cell density, and viral stock age. During incubation with 20 nM sCD4, human immunodeficiency virus type 1 (HIV-1) stocks underwent irreversible inactivation. In contrast, inactivation with 2 nM sCD4 was almost entirely reversible. At lower sCD4 concentrations (less than or equal to 2 nM) and target cell densities of 6.25 x 10(4) ml-1, sCD4 blocking activity for HIV-1 gave a gp120-sCD4 association constant (Kassoc) of 1.7 x 10(9) M-1, which agrees with chemical measurements. At the higher density of 1.6 x 10(7) cells ml-1, however, the blocking activity was 20-fold less. During incubation of HIV-1 stock optimized for infectivity by rapid harvest, sCD4 blocking activity increased 20-fold during a 3-h window. These results show that competitive blocking activity depends strongly on target cell density and virion age. Thus, unappreciated variations in HIV stocks and assay conditions may hinder comparisons of blockers from laboratory to laboratory, and the age of HIV challenge stocks may influence studies of drug and vaccine efficacy. The results also suggest that blocking of viral particles in lymphoid compartments will require very high competitive blocker concentrations, which may explain the refractory outcomes from sCD4-based drug trials in humans.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3