Cellular Microbiology of Mycoplasma canis

Author:

Michaels Dina L.1,Leibowitz Jeffrey A.1,Azaiza Mohammed T.1,Shil Pollob K.1,Shama Suzanne M.1,Kutish Gerald F.2,Distelhorst Steven L.3,Balish Mitchell F.3,May Meghan A.4,Brown Daniel R.1

Affiliation:

1. Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA

2. Department of Pathobiology and Veterinary Science and Center of Excellence for Vaccine Research, University of Connecticut, Storrs, Connecticut, USA

3. Department of Microbiology, Miami University, Oxford, Ohio, USA

4. Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, Maine, USA

Abstract

ABSTRACT Mycoplasma canis can infect many mammalian hosts but is best known as a commensal or opportunistic pathogen of dogs. The unexpected presence of M. canis in brains of dogs with idiopathic meningoencephalitis prompted new in vitro studies to help fill the void of basic knowledge about the organism's candidate virulence factors, the host responses that it elicits, and its potential roles in pathogenesis. Secretion of reactive oxygen species and sialidase varied quantitatively ( P < 0.01) among strains of M. canis isolated from canine brain tissue or mucosal surfaces. All strains colonized the surface of canine MDCK epithelial and DH82 histiocyte cells and murine C8-D1A astrocytes. Transit through MDCK and DH82 cells was demonstrated by gentamicin protection assays and three-dimensional immunofluorescence imaging. Strains further varied ( P < 0.01) in the extents to which they influenced the secretion of tumor necrosis factor alpha (TNF-α) and the neuroendocrine regulatory peptide endothelin-1 by DH82 cells. Inoculation with M. canis also decreased major histocompatibility complex class II (MHC-II) antigen expression by DH82 cells ( P < 0.01), while secretion of gamma interferon (IFN-γ), interleukin-6 (IL-6), interleukin-10 (IL-10), and complement factor H was unaffected. The basis for differences in the responses elicited by these strains was not obvious in their genome sequences. No acute cytopathic effects on any homogeneous cell line, or consistent patterns of M. canis polyvalent antigen distribution in canine meningoencephalitis case brain tissues, were apparent. Thus, while it is not likely a primary neuropathogen, M. canis has the capacity to influence meningoencephalitis through complex interactions within the multicellular and neurochemical in vivo milieu.

Funder

Harold and Vera Morris Trust Research Fund

University of Florida College of Veterinary Medicine Faculty Research Development Fund

University of Florida University Scholars Program

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3