Expression of the Mycobacterium tuberculosis acr -Coregulated Genes from the DevR (DosR) Regulon Is Controlled by Multiple Levels of Regulation

Author:

Vasudeva-Rao Hema M.1,McDonough Kathleen A.12

Affiliation:

1. Wadsworth Center, New York State Department of Health

2. Department of Biomedical Sciences, University at Albany, SUNY, Albany, New York

Abstract

ABSTRACT Little is known about how Mycobacterium tuberculosis regulates gene expression in response to its host environment, despite its importance as a pathogen. We previously characterized 10 a cr - c oregulated g enes (ACGs), all of which belong to the DevR (DosR) “dormancy” regulon, and identified one to three copies of a conserved 18-bp palindromic DNA motif in the promoter of each ACG family member. In the present study, we used base substitution analyses to assess the importance of individual motif copies and to identify additional regulatory sequences in five ACG promoters. Regulation of acr , acg , Rv2623, narK2 , and Rv1738 was examined by using single-copy M. tuberculosis promoter- lacZ reporter constructs in Mycobacterium bovis BCG under conditions of ambient air versus hypoxia, each in shaking versus standing shallow culture conditions. We found that regulation of these ACG promoters is more heterogeneous than expected and is controlled at multiple levels. In addition to the positive regulation previously associated with DevR (DosR) and the 18-bp ACG motif, we identified negative regulation associated with sequences in the 5′ untranslated regions of acg and Rv2623 and positive regulation associated with far upstream regulatory regions of narK2 and Rv1738. The importance of individual ACG motifs varied among the promoters examined, and Rv1738 was exceptional in that its ACG motif copies were associated with negative, rather than positive, regulation under some conditions. Further understanding of this important regulon requires the identification of additional regulators that compete and/or collaborate with DevR (DosR) to regulate its individual gene members.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3