Sorting Signals Required for Trafficking of the Cysteine-Rich Acidic Repetitive Transmembrane Protein in Trypanosoma brucei

Author:

Qiao Xugang1,Chuang Bin-Fay1,Jin Yamei1,Muranjan Madhavi1,Hung Chien-Hui1,Lee Pei-Tseng1,Lee Mary Gwo-Shu1

Affiliation:

1. Department of Pathology, New York University School of Medicine, 550 First Ave., New York, New York 10016

Abstract

ABSTRACT In trypanosomatids, endocytosis and exocytosis are restricted to the flagellar pocket (FP). The c ysteine- r ich a cidic repetitive trans m embrane (CRAM) protein is located at the FP of Trypanosoma brucei and potentially functions as a receptor or an essential component for lipoprotein uptake. We characterized sorting determinants involved in efficient trafficking of CRAM to and from the FP of T. brucei . Previous studies indicated the presence of signals in the CRAM C terminus, specific for its localization to the FP and for efficient endocytosis (H. Yang, D. G. Russell, B. Zeng, M. Eiki, and M.G.-S. Lee, Mol. Cell. Biol. 20:5149-5163, 2000.) To delineate functional domains of putative sorting signals, we performed a mutagenesis series of the CRAM C terminus. Subcellular localization of CRAM mutants demonstrated that the amino acid sequence between −5 and −14 (referred to as a transport signal) is essential for exporting CRAM from the endoplasmic reticulum to the FP, and mutations of amino acids at −12 (V), −10 (V), or −5 (D) led to retention of CRAM in the endoplasmic reticulum. Comparison of the endocytosis efficiency of CRAM mutants demonstrated that the sequence from amino acid −5 to −23 (referred to as a putative endocytosis signal) is required for efficient endocytosis and overlaps with the transport signal. Apparently the CRAM-derived sorting signal can efficiently interact with the T. brucei μ1 adaptin, and mutations at amino acids essential for the function of the transport signal abolished the interaction of the signal with T. brucei μ1, strengthening the hypothesis of the involvement of the clathrin- and adaptor-dependent pathway in trafficking of CRAM via the FP.

Publisher

American Society for Microbiology

Subject

Molecular Biology,General Medicine,Microbiology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3