Attenuated Foot-and-Mouth Disease Virus RNA Carrying a Deletion in the 3′ Noncoding Region Can Elicit Immunity in Swine

Author:

Rodríguez Pulido Miguel12,Sobrino Francisco12,Borrego Belén2,Sáiz Margarita12

Affiliation:

1. Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Cantoblanco, 28049 Madrid, Spain

2. Centro de Investigación en Sanidad Animal, INIA, Valdeolmos, 28130 Madrid, Spain

Abstract

ABSTRACT We constructed foot-and-mouth disease virus (FMDV) mutants bearing independent deletions of the two stem-loop structures predicted in the 3′ noncoding region of viral RNA, SL1 and SL2, respectively. Deletion of SL2 was lethal for viral infectivity in cultured cells, while deletion of SL1 resulted in viruses with slower growth kinetics and downregulated replication associated with impaired negative-strand RNA synthesis. With the aim of exploring the potential of an RNA-based vaccine against foot-and-mouth disease using attenuated viral genomes, full-length chimeric O1K/C-S8 RNAs were first inoculated into pigs. Our results show that FMDV viral transcripts could generate infectious virus and induce disease in swine. In contrast, RNAs carrying the ΔSL1 mutation on an FMDV O1K genome were innocuous for pigs but elicited a specific immune response including both humoral and cellular responses. A single inoculation with 500 μg of RNA was able to induce a neutralizing antibody response. This response could be further boosted by a second RNA injection. The presence of the ΔSL1 mutation was confirmed in viruses isolated from serum samples of RNA-inoculated pigs or after transfection and five passages in cell culture. These findings suggest that deletion of SL1 might contribute to FMDV attenuation in swine and support the potential of RNA technology for the design of new FMDV vaccines.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3