Klebsiella phage KP34gp57 capsular depolymerase structure and function: from a serendipitous finding to the design of active mini-enzymes against K. pneumoniae

Author:

Maciejewska Barbara1,Squeglia Flavia2,Latka Agnieszka1,Privitera Mario2,Olejniczak Sebastian1,Switala Paulina1,Ruggiero Alessia2,Marasco Daniela3,Kramarska Eliza2,Drulis-Kawa Zuzanna1ORCID,Berisio Rita2ORCID

Affiliation:

1. Department of Pathogen Biology and Immunology, University of Wrocław , Wrocław, Poland

2. Institute of Biostructures and Bioimaging, CNR , Napoli, Italy

3. Department of Pharmacy, University of Naples Federico II , Napoli, Italy

Abstract

ABSTRACT Virion-associated depolymerases are large trimeric and multi-domain proteins that constitute the phage arsenal to degrade the polysaccharide layers in their bacterial host. Thus, as recombinant proteins, they are endowed with huge potential in biotechnology and medicine. In this study, we elucidated the structural and functional features of the capsular depolymerase KP34gp57 from the Klebsiella phage KP34. Based on the crystal structure and site-directed mutagenesis, we localized the key catalytic residues in an intra-subunit deep groove. Moreover, we engineered several N- and C-terminally truncated versions of KP34gp57 to dissect the role of each domain in the enzyme’s stability and catalytic activity. Serendipitously, our studies revealed C-terminally trimmed KP34gp57 variants that did not trimerize and were sufficiently stable to preserve full catalytic activity as monomers. The elaboration of trimmed monomeric and fully active phage depolymerases is innovative in the field, as no previous example exists apart from bacterial enzymes. Mini phage depolymerases can be optionally combined within chimeric enzymes to extend their activity range, facilitating their use in stand-alone treatments. Moreover, the intra-subunit and inter-subunit locations of the catalytic pocket in phage depolymerases might suggest differences in their evolutionary origin. IMPORTANCE In this work, we determined the structure of Klebsiella phage KP34p57 capsular depolymerase and dissected the role of individual domains in trimerization and functional activity. The crystal structure serendipitously revealed that the enzyme can exist in a monomeric state once deprived of its C-terminal domain. Based on the crystal structure and site-directed mutagenesis, we localized the key catalytic residues in an intra-subunit deep groove. Consistently, we show that C-terminally trimmed KP34p57 variants are monomeric, stable, and fully active. The elaboration of monomeric, fully active phage depolymerases is innovative in the field, as no previous example exists. Indeed, mini phage depolymerases can be combined in chimeric enzymes to extend their activity ranges, allowing their use against multiple serotypes.

Funder

National Science Centre, Poland

Ministero dell'Università e della Ricerca

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3