The LspB Protein Is Involved in the Secretion of the LspA1 and LspA2 Proteins by Haemophilus ducreyi

Author:

Ward Christine K.1,Mock Jason R.1,Hansen Eric J.1

Affiliation:

1. Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9048

Abstract

ABSTRACT The LspA1 and LspA2 proteins of Haemophilus ducreyi 35000 are two very large macromolecules that can be detected in concentrated culture supernatant fluid. Both of these proteins exhibit homology with the N-terminal region of the Bordetella pertussis filamentous hemagglutinin (FHA), which is involved in secretion of the latter macromolecule. The lspA2 open reading frame is flanked upstream by a gene, lspB , that encodes a predicted protein with homology to the B. pertussis FhaC outer membrane protein that is involved in secretion of FHA across the outer membrane. The H. ducreyi lspB gene encodes a protein with a predicted molecular mass of 66,573 Da. Reverse transcription-PCR analysis suggested that the lspB gene was transcribed together with the lspA2 gene on a single mRNA transcript. Polyclonal H. ducreyi LspB antiserum reacted with a 64-kDa antigen present in the Sarkosyl-insoluble cell envelope fraction of H. ducreyi 35000, which indicated that the LspB protein is likely an outer membrane protein. Concentrated culture supernatant fluids from H. ducreyi lspB and lspA1 lspB mutants did not contain detectable LspA1 and detectable LspA2, respectively. However, complementation of the lspB mutant with the wild-type lspB gene on a plasmid restored LspB protein expression and resulted in release of detectable amounts of the LspA1 protein into culture supernatant fluid. When evaluated in the temperature-dependent rabbit model of infection, the lspB mutant was attenuated in the ability to cause lesions and was never recovered in a viable form from lesions. These results indicated that the H. ducreyi LspB protein is involved in secretion of the LspA1 and LspA2 proteins across the outer membrane.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3