Kinetic analysis by in vivo 31P nuclear magnetic resonance of internal Pi during the uptake of sn-glycerol-3-phosphate by the pho regulon-dependent Ugp system and the glp regulon-dependent GlpT system

Author:

Xavier K B1,Kossmann M1,Santos H1,Boos W1

Affiliation:

1. Instituto de Tecnologia Química e Biológica, UNL, Oeiras, Portugal.

Abstract

When sn-glycerol-3-phosphate (G3P) is taken up exclusively by the pho regulon-dependent Ugp transport system, it can be used as the sole source of Pi but not as the sole source of carbon. We had previously suggested that the inability of G3P to be used as a carbon source under these conditions is due to trans inhibition of G3P uptake by internal Pi derived from the degradation of G3P (P. Brzoska, M. Rimmele, K. Brzostek, and W. Boos, J. Bacteriol. 176:15-20, 1994). Here we report 31P nuclear magnetic resonance measurements of intact cells after exposure to G3P as well as to Pi, using different mutants defective in pst (high-affinity Pi transport), ugp (pho-dependent G3P transport), glpT (glp-dependent G3P transport), and glpD (aerobic G3P dehydrogenase). When G3P was transported by the Ugp system and when metabolism of G3P was allowed (glpD+), Pi accumulated to about 13 to 19 mM. When G3P was taken up by the GlpT system, the preexisting internal Pi pool (whether low or high) did not change. Both systems were inversely controlled by internal Pi. Whereas the Ugp system was inhibited, the GlpT system was stimulated by elevated internal Pi.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3