Homologous Recombination in Core Genomes Facilitates Marine Bacterial Adaptation

Author:

Sun Ying1,Luo Haiwei1

Affiliation:

1. Simon F. S. Li Marine Science Laboratory of School of Life Sciences and Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong

Abstract

ABSTRACT Acquisition of ecologically relevant genes is common among ocean bacteria, but whether it has a major impact on genome evolution in marine environments remains unknown. Here, we analyzed the core genomes of 16 phylogenetically diverse and ecologically relevant bacterioplankton lineages, each consisting of up to five genomes varying at the strain level. Statistical approaches identified from each lineage up to ∼50 loci showing anomalously high divergence at synonymous sites, which is best explained by recombination with distantly related organisms. The enriched gene categories in these outlier loci match well with the characteristics previously identified as the key phenotypes of these lineages. Examples are antibiotic synthesis and detoxification in Phaeobacter inhibens , exopolysaccharide production in Alteromonas macleodii , hydrocarbon degradation in Marinobacter hydrocarbonoclasticus , and cold adaptation in Pseudoalteromonas haloplanktis . Intriguingly, the outlier loci feature polysaccharide catabolism in Cellulophaga baltica but not in Cellulophaga lytica , consistent with their primary habitat preferences in macroalgae and beach sands, respectively. Likewise, analysis of Prochlorococcus showed that photosynthesis-related genes listed in the outlier loci are found only in the high-light-adapted ecotype and not in the low-light adapted ecotype. These observations strongly suggest that recombination with distant relatives is a key mechanism driving the ecological diversification among marine bacterial lineages. IMPORTANCE Acquisition of new metabolic genes has been known as an important mechanism driving bacterial evolution and adaptation in the ocean, but acquisition of novel alleles of existing genes and its potential ecological role have not been examined. Guided by population genetic theories, our genomic analysis showed that divergent allele acquisition is prevalent in phylogenetically diverse marine bacterial lineages and that the affected loci often encode metabolic functions that underlie the known ecological roles of the lineages under study.

Funder

Research Grants Council, University Grants Committee

Environment and Conservation Fund

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3