Isolation and Characterization of Anaerobic Ethylbenzene Dehydrogenase, a Novel Mo-Fe-S Enzyme

Author:

Johnson Hope A.1,Pelletier Dale A.1,Spormann Alfred M.12

Affiliation:

1. Environmental Engineering and Science, Department of Civil and Environmental Engineering,1 and

2. Department of Biological Sciences,2 Stanford University, Stanford, California 94305-4020

Abstract

ABSTRACT The first step in anaerobic ethylbenzene mineralization in denitrifying Azoarcus sp. strain EB1 is the oxidation of ethylbenzene to ( S )-(−)-1-phenylethanol. Ethylbenzene dehydrogenase, which catalyzes this reaction, is a unique enzyme in that it mediates the stereoselective hydroxylation of an aromatic hydrocarbon in the absence of molecular oxygen. We purified ethylbenzene dehydrogenase to apparent homogeneity and showed that the enzyme is a heterotrimer (αβγ) with subunit masses of 100 kDa (α), 35 kDa (β), and 25 kDa (γ). Purified ethylbenzene dehydrogenase contains approximately 0.5 mol of molybdenum, 16 mol of iron, and 15 mol of acid-labile sulfur per mol of holoenzyme, as well as a molydopterin cofactor. In addition to ethylbenzene, purified ethylbenzene dehydrogenase was found to oxidize 4-fluoro-ethylbenzene and the nonaromatic hydrocarbons 3-methyl-2-pentene and ethylidenecyclohexane. Sequencing of the encoding genes revealed that ebdA encodes the α subunit, a 974-amino-acid polypeptide containing a molybdopterin-binding domain. The ebdB gene encodes the β subunit, a 352-amino-acid polypeptide with several 4Fe-4S binding domains. The ebdC gene encodes the γ subunit, a 214-amino-acid polypeptide that is a potential membrane anchor subunit. Sequence analysis and biochemical data suggest that ethylbenzene dehydrogenase is a novel member of the dimethyl sulfoxide reductase family of molybdopterin-containing enzymes.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 119 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3