trans -3-Chloroacrylic Acid Dehalogenase from Pseudomonas pavonaceae 170 Shares Structural and Mechanistic Similarities with 4-Oxalocrotonate Tautomerase

Author:

Poelarends Gerrit J.1,Saunier Raymond1,Janssen Dick B.1

Affiliation:

1. Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands

Abstract

ABSTRACT The genes ( caaD1 and caaD2 ) encoding the trans -3-chloroacrylic acid dehalogenase (CaaD) of the 1,3-dichloropropene-utilizing bacterium Pseudomonas pavonaceae 170 were cloned and heterologously expressed in Escherichia coli and Pseudomonas sp. strain GJ1. CaaD is a protein of 50 kDa that is composed of α-subunits of 75 amino acid residues and β-subunits of 70 residues. It catalyzes the hydrolytic cleavage of the β-vinylic carbon-chlorine bond in trans -3-chloroacrylic acid with a turnover number of 6.4 s −1 . On the basis of sequence similarity, oligomeric structure, and subunit size, CaaD appears to be related to 4-oxalocrotonate tautomerase (4-OT). This tautomerase consists of six identical subunits of 62 amino acid residues and catalyzes the isomerization of 2-oxo-4-hexene-1,6-dioate, via hydroxymuconate, to yield 2-oxo-3-hexene-1,6-dioate. In view of the oligomeric architecture of 4-OT, a trimer of homodimers, CaaD is postulated to be a hexameric protein that functions as a trimer of αβ-dimers. The sequence conservation between CaaD and 4-OT and site-directed mutagenesis experiments suggested that Pro-1 of the β-subunit and Arg-11 of the α-subunit are active-site residues in CaaD. Pro-1 could act as the proton acceptor/donor, and Arg-11 is probably involved in carboxylate binding. Based on these findings, a novel dehalogenation mechanism is proposed for the CaaD-catalyzed reaction which does not involve the formation of a covalent enzyme-substrate intermediate.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3