Transcellular Passage of Neisseria meningitidis across a Polarized Respiratory Epithelium

Author:

Sutherland Thomas C.1,Quattroni Paola1,Exley Rachel M.1,Tang Christoph M.1

Affiliation:

1. Centre for Molecular Microbiology and Infection, Flowers Building, Imperial College London, London SW7 2AZ, United Kingdom

Abstract

ABSTRACT Neisseria meningitidis is a major cause of sepsis and meningitis but is also a common commensal, present in the nasopharynx of between 8 and 20% of healthy individuals. During carriage, the bacterium is found on the surface of the nasopharyngeal epithelium and in deeper tissues, while to develop disease the meningococcus must spread across the respiratory epithelium and enter the systemic circulation. Therefore, investigating the pathways by which N. meningitidis crosses the epithelial barrier is relevant for understanding carriage and disease but has been hindered by the lack of appropriate models. Here, we have established a physiologically relevant model of the upper respiratory epithelial cell barrier to investigate the mechanisms responsible for traversal of N. meningitidis. Calu-3 human respiratory epithelial cells were grown on permeable cell culture membranes to form polarized monolayers of cells joined by tight junctions. We show that the meningococcus crosses the epithelial cell barrier by a transcellular route; traversal of the layer did not disrupt its integrity, and bacteria were detected within the cells of the monolayer. We demonstrate that successful traversal of the epithelial cell barrier by N. meningitidis requires expression of its type 4 pili (Tfp) and capsule and is dependent on the host cell microtubule network. The Calu-3 model should be suitable for dissecting the pathogenesis of infections caused by other respiratory pathogens, as well as the meningococcus.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3