In Vitro Susceptibility Testing of Filamentous Fungi: Comparison of Etest and Reference Microdilution Methods for Determining Itraconazole MICs

Author:

Pfaller M. A.1,Messer S. A.1,Mills K.2,Bolmström A.2

Affiliation:

1. Department of Pathology, University of Iowa College of Medicine, Iowa City, Iowa, 1 and

2. AB BIODISK, Solna, Sweden 2

Abstract

The performance of the Etest for itraconazole susceptibility testing of 50 isolates of filamentous fungi was assessed in comparison with the National Committee for Clinical Laboratory Standards (NCCLS) proposed standard microdilution broth method. The NCCLS method employed RPMI 1640 broth medium, and MICs were read after incubation for 48 h at 35°C. Etest MICs were determined with RPMI agar containing 2% glucose and with Casitone agar and were read after incubation for 24 h (Aspergillus spp. and Rhizopus spp.) and 48 h (all species except Rhizopus spp.) at 35°C. The isolates included Aspergillus flavus, Aspergillus fumigatus, Aspergillus niger, Aspergillus terreus, Fusarium spp., Pseudallescheria boydii, Rhizopus spp., Paecilomyces variotii, and an Acremonium sp. Overall agreement between Etest and microdilution MICs was 96% with RPMI agar and 80% with Casitone agar. The agreement was 100% for all species exceptRhizopus spp. (83%) and Paecilomyces varioti(0%) with RPMI agar. When Casitone agar was used, the agreement ranged from 50% with Rhizopus spp. to 100% withFusarium spp., P. boydii, P. varioti, and an Acremonium sp. Notably, forAspergillus spp., the agreement between itraconazole Etest MICs read at 24 h and reference microdilution MICs read at 48 h was 100% with both RPMI and Casitone agar. Both media supported the growth of all filamentous fungi tested. Where a discrepancy was observed between Etest and the reference method, the Etest MIC was generally higher. The Etest method using RPMI agar appears to be a useful method for determining itraconazole susceptibilities ofAspergillus spp. and other filamentous fungi.

Publisher

American Society for Microbiology

Subject

Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3