DNA Immunization in a Mouse Model of Latent Tuberculosis: Effect of DNA Vaccination on Reactivation of Disease and on Reinfection with a Secondary Challenge

Author:

Repique Charlene J.1,Li Amy1,Collins Frank M.1,Morris Sheldon L.1

Affiliation:

1. Laboratory of Mycobacterial Diseases and Cellular Immunology, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Bethesda, Maryland 20892

Abstract

ABSTRACT Individuals who are latently infected with Mycobacterium tuberculosis can develop active disease via either endogenous reactivation of the latent bacilli or exogenous reinfection with a second mycobacterial strain. In this study, we investigated whether immunization with a tuberculosis DNA vaccine cocktail that induces significant protective responses in mice could prevent reactivation of disease in a murine latent-tuberculosis model. In addition, we assessed whether DNA vaccination could retard the growth of a secondary aerogenic infection with M. tuberculosis (exogenous reinfection) in latently infected mice. In the reactivation studies, administration of the DNA vaccine combination did not prevent recrudescence of the latent infection after injection of dexamethasone. Moreover, for the reinfection experiments, only a modest decrease in the growth of a secondary M. tuberculosis challenge in DNA-vaccinated animals, compared to controls, was observed 14 and 28 days after the reinfection of previously exposed mice. Interestingly, although proliferation of the secondary challenge was reduced significantly in a nonvaccinated chronic-infection group relative to the naïve controls, the number of bacilli still increased by 500-fold 1 month after the secondary challenge in mice with active tuberculosis. These results indicate that novel immunotherapeutic approaches will be required to prevent reactivation of infection or reinfection of individuals with latent tuberculosis.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3