In Vivo Detection and Quantification of Tetracycline by Use of a Whole-Cell Biosensor in the Rat Intestine

Author:

Bahl Martin Iain12,Hansen Lars Hestbjerg1,Licht Tine Rask2,Sørensen Søren J.1

Affiliation:

1. Department of Microbiology, University of Copenhagen, 1307 Copenhagen K

2. Institute of Food Safety and Nutrition, Danish Veterinary and Food Administration, 2860 Søborg, Denmark

Abstract

ABSTRACT An Escherichia coli biosensor strain, harboring the plasmid pTGFP2, was introduced into the gastrointestinal tract of gnotobiotic rats that continuously received drinking water containing tetracycline. Plasmid pTGFP2 contains a transcriptional fusion between a green fluorescent protein (GFP) gene and a tetracycline-regulated promoter and was shown to produce a proportional GFP signal in response to exposure to various tetracycline concentrations when harbored by an E. coli strain. The plasmid was highly unstable in the host bacteria colonizing the intestinal system of the animals, and rapid plasmid loss was observed. Reintroduction of the E. coli MC4100/pTGFP2 strain into animals already colonized by the plasmid-free E. coli strain the day before euthanasia made it possible to extract and analyze the biosensors from intestinal samples. The induction of GFP in the biosensor cells extracted from the animals was estimated on a single-cell basis by use of flow cytometry, and the mean induction of GFP in the samples was compared to a standard curve prepared from known tetracycline concentrations. The results showed that the bioavailable tetracycline concentration within the bacterial growth habitat of the intestine was proportional to the concentration of tetracycline in drinking water but represented only approximately 0.4% of the intake concentration. This is a significant finding which will help to clarify antimicrobial therapy in the intestinal environment.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3