Effect of Purified Lipopolysaccharides from Strains of Helicobacter pylori and Helicobacter felis on Acid Secretion in Mouse Gastric Glands In Vitro

Author:

Padol Ireneusz T.1,Moran Anthony P.2,Hunt Richard H.1

Affiliation:

1. Intestinal Disease Research Programme, McMaster University, Hamilton, Ontario, Canada,1and

2. Department of Microbiology, National University of Ireland, Galway, Ireland2

Abstract

ABSTRACT As a bacterial product, Helicobacter pylori lipopolysaccharide (LPS) can originate in close proximity to parietal cells, but the role of this uniquely structured endotoxin on acid secretion has not been fully investigated and remains unclear. The purpose of this study was to test the direct effect of purified LPS (tested range, 0.1 to 100 μg/ml) from various strains of H. pylori and from one Helicobacter felis strain on histamine- and carbachol-stimulated acid secretion in vitro using mouse gastric glands and the accumulation of [ 14 C]aminopyrine. In addition, we investigated whether H. pylori LPS can interfere with two native antisecretory substances, prostaglandin E 2 (PGE 2 ) and somatostatin, which may contribute to bacterial pathogenicity. Except for the LPS from H. pylori SS1 (Sydney strain), which gave a statistically significant increase in both histamine- and carbachol-stimulated acid output (38 and 24%, respectively; P < 0.05), no effect of the tested LPS was observed on acid secretion. H. pylori LPS purified from a patient isolate did not affect the potency or the efficacy of the inhibitory dose response curve to PGE 2 or somatostatin. Bacterial interstrain variation in the direct stimulatory effect of Helicobacter -derived LPS on acid secretion was observed, which probably reflects the molecular structure of LPS and the potential to contribute to virulence. Importantly, the data showed that H. pylori LPS did not have any direct antisecretory properties. It can be speculated that the acid stimulatory properties of LPS from H. pylori SS1 may contribute to the gastric damage observed in the mouse model of H. pylori infection.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3