Affiliation:
1. Department of Cell and Molecular Biology, Section for Molecular Pathogenesis, Lund University, Lund, Sweden
Abstract
ABSTRACT
With a large number of sequenced microbial genomes available, tools for identifying groups or classes of proteins have become increasingly important. Here we present an improved pattern for the identification of cell wall-attached proteins (CWPs), a group of proteins with diverse and important functions in gram-positive bacteria. This tripartite pattern is based on analysis of 65 previously described cell wall-attached proteins and takes into account the three principal requirements for cell wall sorting; a sortase target region (LPXTGX), a membrane-spanning region, and a charged stop-transfer tail. In five different genomes of gram-positive bacteria, the tripartite pattern identified a total of 35 putative CWPs, 19 of which were novel. The specificity and sensitivity of the tripartite pattern are higher than those of the classical pattern, which is based solely on the sortase target region. Several putative CWPs with atypical sortase target regions were identified. In the complete genome of the important human pathogen
Streptococcus pyogenes
, the tripartite pattern identified 14 putative CWPs. Seven of the putative
S. pyogenes
proteins were novel, and two of these were a 5′ nucleotidase and a pullulanase. This study represents the first whole-genome screening for CWPs, and we conclude that the tripartite pattern is highly suitable for this purpose. Identification of CWPs using this pattern offers important possibilities in the study of the pathogenesis and physiology of gram-positive bacteria.
Publisher
American Society for Microbiology
Subject
Infectious Diseases,Immunology,Microbiology,Parasitology
Cited by
63 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献