Recombinant PhpA Protein, a Unique Histidine Motif-Containing Protein from Streptococcus pneumoniae , Protects Mice against Intranasal Pneumococcal Challenge

Author:

Zhang Ying1,Masi Amy W.2,Barniak Vicki1,Mountzouros Ken2,Hostetter Margaret K.3,Green Bruce A.2

Affiliation:

1. Departments ofImmunology1 and

2. Bacteriology2 Research, Wyeth Lederle Vaccines, West Henrietta, New York, and

3. Department of Children's Health, Yale University School of Medicine, New Haven, Connecticut3

Abstract

ABSTRACT The multivalent pneumococcal conjugate vaccine is effective against both systemic disease and otitis media caused by serotypes contained in the vaccine. However, serotypes not covered by the current conjugate vaccine may still cause pneumococcal disease. To address these serotypes and the remaining otitis media due to Streptococcus pneumoniae , we have been evaluating antigenically conserved proteins from S. pneumoniae as vaccine candidates. A previous report identified a 20-kDa protein with putative human complement C3-proteolytic activity. By utilizing the publicly released pneumococcal genomic sequences, we found the gene encoding the 20-kDa protein to be part of a putative open reading frame of approximately 2,400 bp. We recombinantly expressed a 79-kDa fragment (rPhpA-79) that contains a repeated HxxHxH motif and evaluated it for vaccine potential. The antibodies elicited by the purified rPhpA-79 protein were cross-reactive to proteins from multiple strains of S. pneumoniae and were against surface-exposed epitopes. Immunization with rPhpA-79 protein adjuvanted with monophosphoryl lipid A (for subcutaneous immunization) or a mutant cholera toxin, CT-E29H (for intranasal immunization), protected CBA/N mice against death and bacteremia, as well as reduced nasopharyngeal colonization, following intranasal challenge with a heterologous pneumococcal strain. In contrast, immunization with the 20-kDa portion of the PhpA protein did not protect mice. These results suggest that rPhpA-79 is a potential candidate for use as a vaccine against pneumococcal systemic disease and otitis media.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3