Novel Protein Substrates of the Phospho-Form Modification System in Neisseria gonorrhoeae and Their Connection toO-Linked Protein Glycosylation

Author:

Anonsen Jan Haug,Egge-Jacobsen Wolfgang,Aas Finn Erik,Børud Bente,Koomey Michael,Vik Åshild

Abstract

ABSTRACTThe zwitterionic phospho-form moieties phosphoethanolamine (PE) and phosphocholine (PC) are important components of bacterial membranes and cell surfaces. The major type IV pilus subunit protein ofNeisseria gonorrhoeae, PilE, undergoes posttranslational modifications with these moieties via the activity of the pilin phospho-form transferase PptA. A number of observations relating to colocalization of phospho-form andO-linked glycan attachment sites in PilE suggested that these modifications might be either functionally or mechanistically linked or interact directly or indirectly. Moreover, it was unknown whether the phenomenon of phospho-form modification was solely dedicated to PilE or if other neisserial protein targets might exist. In light of these concerns, we screened for evidence of phospho-form modification on other membrane glycoproteins targeted by the broad-spectrumO-linked glycosylation system. In this way, two periplasmic lipoproteins, NGO1043 and NGO1237, were identified as substrates for PE addition. As seen previously for PilE, sites of PE modifications were clustered with those of glycan attachment. In the case of NGO1043, evidence for at least six serine phospho-form attachment sites was found, and further analyses revealed that at least two of these serines were also attachment sites for glycan. Finally, mutations altering glycosylation status led to the presence ofpptA-dependent PC modifications on both proteins. Together, these results reinforce the associations established in PilE and provide evidence for dynamic interplay between phospho-form modification andO-linked glycosylation. The observations also suggest that phospho-form modifications likely contribute biologically at both intracellular and extracellular levels.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3