Deletion of the Vaccinia Virus B1 Kinase Reveals Essential Functions of This Enzyme Complemented Partly by the Homologous Cellular Kinase VRK2

Author:

Olson Annabel T.12,Rico Amber B.13,Wang Zhigang1,Delhon Gustavo3,Wiebe Matthew S.13

Affiliation:

1. Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska, USA

2. School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, USA

3. School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, Nebraska, USA

Abstract

ABSTRACT The vaccinia virus B1 kinase is highly conserved among poxviruses and is essential for the viral life cycle. B1 exhibits a remarkable degree of similarity to vaccinia virus-related kinases (VRKs), a family of cellular kinases, suggesting that the viral enzyme has evolved to mimic VRK activity. Indeed, B1 and VRKs have been demonstrated to target a shared substrate, the DNA binding protein BAF, elucidating a signaling pathway important for both mitosis and the antiviral response. In this study, we further characterize the role of B1 during vaccinia infection to gain novel insights into its regulation and integration with cellular signaling pathways. We begin by describing the construction and characterization of the first B1 deletion virus (vvΔB1) produced using a complementing cell line expressing the viral kinase. Examination of vvΔB1 revealed that B1 is critical for the production of infectious virions in various cell types and is sufficient for BAF phosphorylation. Interestingly, the severity of the defect in DNA replication following the loss of B1 varied between cell types, leading us to posit that cellular VRKs partly complement for the absence of B1 in some cell lines. Using cell lines devoid of either VRK1 or VRK2, we tested this hypothesis and discovered that VRK2 expression facilitates DNA replication and allows later stages of the viral life cycle to proceed in the absence of B1. Finally, we present evidence that the impact of VRK2 on vaccinia virus is largely independent of BAF phosphorylation. These data support a model in which B1 and VRK2 share additional substrates important for the replication of cytoplasmic poxviruses. IMPORTANCE Viral mimicry of cellular signaling modulators provides clear evidence that the pathogen targets an important host pathway during infection. Poxviruses employ numerous viral homologs of cellular proteins, the study of which have yielded insights into signaling pathways used by both virus and cells alike. The vaccinia virus B1 protein is a homolog of cellular vaccinia virus-related kinases (VRKs) and is needed for viral DNA replication and likely other stages of the viral life cycle. However, much remains to be learned about how B1 and VRKs overlap functionally. This study utilizes new tools, including a B1 deletion virus and VRK knockout cells, to further characterize the functional links between the viral and cellular enzymes. As a result, we have discovered that B1 and VRK2 target a common set of substrates vital to productive infection of this large cytoplasmic DNA virus.

Funder

HHS | NIH | National Institute of Allergy and Infectious Diseases

HHS | NIH | National Institute of General Medical Sciences

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Reference46 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3