Reversible activation of mouse metal response element-binding transcription factor 1 DNA binding involves zinc interaction with the zinc finger domain

Author:

Dalton T P1,Bittel D1,Andrews G K1

Affiliation:

1. Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City 66160-7421, USA.

Abstract

The DNA-binding activity of the Zn finger protein metal response element-binding transcription factor 1 (MTF-1) was rapidly induced both in vivo in mouse Hepa cells, canine MDCK, and human HeLa cells after incubation in medium containing zinc and in vitro in whole-cell extracts to which zinc was added. Acquisition of DNA-binding capacity in the presence of free zinc was temperature and time dependent and did not occur at 4 degrees C. In contrast, activated MTF-1 binding to the metal response element occurred at 4 degrees C. After Zn activation, mouse MTF-1 binding activity was more sensitive to EDTA and was stabilized by DNA binding relative to the Zn finger transcription factor Sp1. After dilution of nuclear or whole-cell extracts from Zn-treated cells and incubation at 37 degrees C, mouse MTF-1 DNA-binding activity was no longer detected but could be completely reconstituted by the subsequent readdition of zinc. In vitro-synthesized, recombinant mouse MTF-1 displayed a similar, reversible temperature- and Zn-dependent activation of DNA-binding activity. Analysis of deletion mutants of recombinant MTF-1 suggests that the Zn finger domain is important for the Zn-dependent activation of DNA-binding capacity. Thus, mouse MTF-1 functions as a reversibly activated sensor of free zinc pools in the cell.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Reference34 articles.

1. Regulation of metallothionein gene expression;Andrews G. K.;Prog. Food Nutr. Sci.,1990

2. Transcriptional control by nuclear receptors;Beato M.;FASEB J.,1991

3. Purification and biochemical characterization of the promoter-specific transcription factor, Sp1;Briggs M. R.;Science,1986

4. Cloning, chromosomal mapping and characterization of the human metal-regulatory transcription factor MTF-1;Brugnera E.;Nucleic Acids Res.,1994

5. Fine mapping of a mouse metallothionein gene metal response element;Cizewski Culotta V.;Mol. Cell. Biol.,1989

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3