Reduced O glycosylation of Sp1 is associated with increased proteasome susceptibility

Author:

Han I1,Kudlow J E1

Affiliation:

1. Department of Medicine, University of Alabama at Birmingham, 35294, USA.

Abstract

Sp1 is a ubiquitously expressed transcription factor that is particularly important for the regulation of TATA-less genes that encode housekeeping proteins. Most growth factors and receptors are also encoded by such genes. Sp1 is multiply O glycosylated by covalent linkage of the monosaccharide N-acetylglucosamine (O-GlcNAc) to serine and threonine residues. Based on an earlier observation that growth factor gene transcription can be regulated by glucose and glucosamine in vascular smooth muscle cells, we determined whether Sp1 glycosylation could be regulated and if this modification altered Sp1 function. We found that Sp1 becomes hyperglycosylated when cells are exposed to 5 mM glucosamine, whereas under glucose starvation, stimulation with cyclic AMP (cAMP) results in nearly complete deglycosylation of this protein. Correlating with this hypoglycosylated state, Sp1 is rapidly proteolytically degraded by an enzyme(s) that can be inhibited by specific proteasome inhibitors, lactacystin and LLnL. Treatment of cells with glucose or glucosamine protects Sp1 from cAMP-mediated degradation, whereas blockade of glucosamine synthesis abrogates glucose but not glucosamine protection. This effect on Sp1 is specific, in that the Stat-3 and E2F transcription factors did not undergo degradation under these conditions. The O-GlcNAc modification of Sp1 may play a role as a nutritional checkpoint. In the absence of adequate nutrition, Sp1 becomes hypoglycosylated and thereby subject to proteasome degradation. This process could potentially result in reduced general transcription, thereby conserving nutrients.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Reference52 articles.

1. E2-C, a cyclin-selective ubiquitin carrier protein required for the destruction of mitotic cyclins;Aristarkhow A.;Proc. Natl. Acad. Sci. USA,1996

2. Transcription from TATA-less promoters: dihydrofolate reductase as a model;Azizkhan J. C.;Crit. Rev. Eukaryot. Gene Expression,1993

3. G1 cyclin turnover and nutrient uptake are controlled by a common pathway in yeast;Barral Y.;Genes Dev.,1995

4. The role of the transcription factor Sp1 in regulating the expression of the WAF1/CIP1 gene in U937 leukemic cells;Biggs J. R.;J. Biol. Chem.,1996

5. Purification and biochemical characterization of the promoter specific transcription factor Sp1;Briggs M. R.;Science,1986

Cited by 387 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3