Genotyping and Toxigenic Potential of Bacillus subtilis and Bacillus pumilus Strains Occurring in Industrial and Artisanal Cured Sausages

Author:

Matarante Alessandra1,Baruzzi Federico1,Cocconcelli Pier Sandro2,Morea Maria1

Affiliation:

1. Istituto di Scienze delle Produzioni Alimentari (ISPA), CNR, Bari

2. Istituto di Microbiologia, Università Cattolica del Sacro Cuore, Piacenza, Italy

Abstract

ABSTRACT Artisanal and industrial sausages were analyzed for their aerobic, heat-resistant microflora to assess whether new emerging pathogens could be present among Bacillus strains naturally contaminating cured meat products. Sixty-four isolates were characterized by randomly amplified polymorphic DNA (RAPD)-PCR and fluorescent amplified fragment length polymorphism (fAFLP). The biotypes, identified by partial 16S rRNA gene sequence analysis, belonged to Bacillus subtilis , Bacillus pumilus , and Bacillus amyloliquefaciens species. Both RAPD-PCR and fAFLP analyses demonstrated that a high genetic heterogeneity is present in the B. subtilis group even in strains harvested from the same source, making it possible to isolate 56 different biotypes. Moreover, fAFLP analysis made it possible to distinguish B. subtilis from B. pumilus strains. The strains were characterized for their toxigenic potential by molecular, physiological, and immunological techniques. Specific PCR analyses revealed the absence of DNA sequences related to HBL, BcET, NHE, and entFM Bacillus cereus enterotoxins and the enzymes sphingomyelinase Sph and phospholipase PI-PLC in all strains; also, the immunological analyses showed that Bacillus strains did not react with NHE- and HBL-specific antibodies. However, some isolates were found to be positive for hemolytic and lecithinase activity. The absence of toxigenic potential in Bacillus strains from the sausages analyzed indicates that these products can be considered safe under the processing conditions they were produced; however, great care should be taken when the ripening time is shortened, particularly in the case of traditional sausages, which could contain high amounts of Bacillus strains and possibly some B. cereus cells.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3