Functions, Compositions, and Evolution of the Two Types of Carboxysomes: Polyhedral Microcompartments That Facilitate CO 2 Fixation in Cyanobacteria and Some Proteobacteria

Author:

Rae Benjamin D.1,Long Benedict M.1,Badger Murray R.1,Price G. Dean1

Affiliation:

1. Division of Plant Science, Research School of Biology, The Australian National University, Canberra, ACT, Australia

Abstract

SUMMARY Cyanobacteria are the globally dominant photoautotrophic lineage. Their success is dependent on a set of adaptations collectively termed the CO 2 -concentrating mechanism (CCM). The purpose of the CCM is to support effective CO 2 fixation by enhancing the chemical conditions in the vicinity of the primary CO 2 -fixing enzyme, d -ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO), to promote the carboxylase reaction and suppress the oxygenase reaction. In cyanobacteria and some proteobacteria, this is achieved by encapsulation of RubisCO within carboxysomes, which are examples of a group of proteinaceous bodies called bacterial microcompartments. Carboxysomes encapsulate the CO 2 -fixing enzyme within the selectively permeable protein shell and simultaneously encapsulate a carbonic anhydrase enzyme for CO 2 supply from a cytoplasmic bicarbonate pool. These bodies appear to have arisen twice and undergone a process of convergent evolution. While the gross structures of all known carboxysomes are ostensibly very similar, with shared gross features such as a selectively permeable shell layer, each type of carboxysome encapsulates a phyletically distinct form of RubisCO enzyme. Furthermore, the specific proteins forming structures such as the protein shell or the inner RubisCO matrix are not identical between carboxysome types. Each type has evolutionarily distinct forms of the same proteins, as well as proteins that are entirely unrelated to one another. In light of recent developments in the study of carboxysome structure and function, we present this review to summarize the knowledge of the structure and function of both types of carboxysome. We also endeavor to cast light on differing evolutionary trajectories which may have led to the differences observed in extant carboxysomes.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology,Infectious Diseases

Reference246 articles.

1. Evolution and diversity of CO2 concentrating mechanisms in cyanobacteria;Badger MR;Funct. Plant Biol.,2002

2. CO2 concentrating mechanisms in cyanobacteria: molecular components, their diversity and evolution;Badger MR;J. Exp. Bot.,2003

3. Inorganic carbon concentrating mechanisms in relation to the biology of algae;Raven JA;Photosynth. Res.,2003

4. The diversity and coevolution of Rubisco, plastids, pyrenoids, and chloroplast-based CO2-concentrating mechanisms in algae;Badger MR;Can. J. Bot.,1998

5. Mechanism of RUBISCO—the carbamate as general base;Cleland WW;Chem. Rev.,1998

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3