Inhibition of Flavivirus Infections by Antisense Oligomers Specifically Suppressing Viral Translation and RNA Replication

Author:

Deas Tia S.1,Binduga-Gajewska Iwona2,Tilgner Mark2,Ren Ping2,Stein David A.3,Moulton Hong M.3,Iversen Patrick L.3,Kauffman Elizabeth B.2,Kramer Laura D.12,Shi Pei-Yong12

Affiliation:

1. Wadsworth Center, New York State Department of Health

2. Department of Biomedical Sciences, University at Albany, State University of New York, Albany, New York

3. AVI BioPharma, Inc., Corvallis, Oregon

Abstract

ABSTRACT RNA elements within flavivirus genomes are potential targets for antiviral therapy. A panel of phosphorodiamidate morpholino oligomers (PMOs), whose sequences are complementary to RNA elements located in the 5′- and 3′-termini of the West Nile (WN) virus genome, were designed to anneal to important cis -acting elements and potentially to inhibit WN infection. A novel Arg-rich peptide was conjugated to each PMO for efficient cellular delivery. These PMOs exhibited various degrees of antiviral activity upon incubation with a WN virus luciferase-replicon-containing cell line. Among them, PMOs targeting the 5′-terminal 20 nucleotides (5′End) or targeting the 3′-terminal element involved in a potential genome cyclizing interaction (3′CSI) exhibited the greatest potency. When cells infected with an epidemic strain of WN virus were treated with the 5′End or 3′CSI PMO, virus titers were reduced by approximately 5 to 6 logs at a 5 μM concentration without apparent cytotoxicity. The 3′CSI PMO also inhibited mosquito-borne flaviviruses other than WN virus, and the antiviral potency correlated with the conservation of the targeted 3′CSI sequences of specific viruses. Mode-of-action analyses showed that the 5′End and 3′CSI PMOs suppressed viral infection through two distinct mechanisms. The 5′End PMO inhibited viral translation, whereas the 3′CSI PMO did not significantly affect viral translation but suppressed RNA replication. The results suggest that antisense PMO-mediated blocking of cis -acting elements of flavivirus genomes can potentially be developed into an anti-flavivirus therapy. In addition, we report that although a full-length WN virus containing a luciferase reporter (engineered at the 3′ untranslated region of the genome) is not stable, an early passage of this reporting virus can be used to screen for inhibitors against any step of the virus life cycle.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3