MNN5 Encodes an Iron-Regulated α-1,2-Mannosyltransferase Important for Protein Glycosylation, Cell Wall Integrity, Morphogenesis, and Virulence in Candida albicans

Author:

Bai Chen1,Xu Xiao-Li1,Chan Fong-Yee1,Lee Raymond Teck Ho1,Wang Yue1

Affiliation:

1. Institute of Molecular and Cell Biology, ASTAR Biomedical Sciences Institutes, 61 Biopolis Drive, Singapore 138673, Singapore

Abstract

ABSTRACT The cell walls of microbial pathogens mediate physical interactions with host cells and hence play a key role in infection. Mannosyltransferases have been shown to determine the cell wall properties and virulence of the pathogenic fungus Candida albicans . We previously identified a C. albicans α-1,2-mannosyltransferase, Mnn5, for its novel ability to enhance iron usage in Saccharomyces cerevisiae . Here we have studied the enzymatic properties of purified Mnn5 and characterized its function in its natural host. Mnn5 catalyzes the transfer of mannose to both α-1,2- and α-1,6-mannobiose, and this activity requires Mn 2+ as a cofactor and is regulated by the Fe 2+ concentration. An mnn5Δ mutant showed a lowered ability to extend O-linked, and possibly also N-linked, mannans, hypersensitivity to cell wall-damaging agents, and a reduction of cell wall mannosylphosphate content, phenotypes typical of many fungal mannosyltransferase mutants. The mnn5Δ mutant also exhibited some unique defects, such as impaired hyphal growth on solid media and attenuated virulence in mice. An unanticipated phenotype was the mnn5Δ mutant's resistance to killing by the iron-chelating protein lactoferrin, rendering it the first protein found that mediates lactoferrin killing of C. albicans . In summary, MNN5 deletion impairs a wide range of cellular events, most likely due to its broad substrate specificity. Of particular interest was the observed role of iron in regulating the enzymatic activity, suggesting an underlying relationship between Mnn5 activity and cellular iron homeostasis.

Publisher

American Society for Microbiology

Subject

Molecular Biology,General Medicine,Microbiology

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3