Affiliation:
1. Département de Biochimie, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
Abstract
ABSTRACT
Copper homeostasis within the cell is established and preserved by different mechanisms. Changes in gene expression constitute a way of maintaining this homeostasis. In
Schizosaccharomyces pombe
, the Cuf1 transcription factor is critical for the activation of copper transport gene expression under conditions of copper starvation. However, in the presence of elevated intracellular levels of copper, the mechanism of Cuf1 inactivation to turn off gene expression remains unclear. In this study, we provide evidence that inactivation of copper transport gene expression by Cuf1 is achieved through a copper-dependent, cytosolic retention of Cuf1. We identify a minimal nuclear localization sequence (NLS) between amino acids 11 to 53 within the Cuf1 N terminus. Deletion of this region and specific mutation of the Lys
13
, Arg
16
, Arg
19
, Lys
24
, Arg
28
, Lys
45
, Arg
47
, Arg
50
, and Arg
53
residues to alanine within this putative NLS is sufficient to abrogate nuclear targeting of Cuf1. Under conditions of copper starvation, Cuf1 resides in the nucleus. However, in the presence of excess copper as well as silver ions, Cuf1 is sequestered in the cytoplasm, a process which requires the putative copper binding motif,
328
Cys-X-Cys-X
3
-Cys-X-Cys-X
2
-Cys-X
2
-His
342
(designated C-rich), within the C-terminal region of Cuf1. Deletion of this region and mutation of the Cys residues within the C-rich motif result in constitutive nuclear localization of Cuf1. By coexpressing the Cuf1 N terminus with its C terminus in
trans
and by using a two-hybrid assay, we show that these domains physically interact with each other in a copper-dependent manner. We propose a model wherein copper induces conformational changes in Cuf1 that promote a physical interaction between the Cuf1 N terminus and the C-rich motif in the C terminus that masks the NLS. Cuf1 is thereby sequestered in the cytosol under conditions of copper excess, thereby extinguishing copper transport gene expression.
Publisher
American Society for Microbiology
Subject
Molecular Biology,General Medicine,Microbiology
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献