Resistance to Moxifloxacin in Toxigenic Clostridium difficile Isolates Is Associated with Mutations in gyrA

Author:

Ackermann Grit12,Tang Yajarayma J.1,Kueper Robert3,Heisig Peter4,Rodloff Arne C.2,Silva Joseph1,Cohen Stuart H.1

Affiliation:

1. Department of Internal Medicine, Division of Infectious Diseases, University of California-Davis, Medical Center, Sacramento, California,1 and

2. Institute for Medical Microbiology and Epidemiology of Infectious Diseases, University of Leipzig, 04103 Leipzig,2

3. Merlin Diagnostika mbH, 53332 Bornheim-Hersel,3 and

4. Department of Pharmaceutical Biology, Institute of Pharmacy, University of Hamburg, 20146 Hamburg,4 Germany

Abstract

ABSTRACT Clostridium difficile is the etiological agent of antibiotic-associated colitis and the most common cause of hospital-acquired infectious diarrhea. Fluoroquinolones such as ciprofloxacin are associated with lower risks of C. difficile -associated diarrhea. In this study, we have analyzed 72 C. difficile isolates obtained from patients with different clinical courses of disease, such as toxic megacolon and relapses; the hospital environment; public places; and horses. They were investigated for their susceptibilities to moxifloxacin (MXF), metronidazole (MEO), and vancomycin (VAN). Mutants highly resistant to fluoroquinolones were selected in vitro by stepwise exposure to increasing concentrations of MXF. The resulting mutants were analyzed for the presence of mutations in the quinolone resistance-determining regions of DNA gyrase ( gyrA ), the production of toxins A and B, and the epidemiological relationship of these isolates. These factors were also investigated using PCR-based methods. All strains tested were susceptible to MEO and VAN. Twenty-six percent of the clinical isolates (19 of 72) were highly resistant to MXF (MIC ≥ 16 μg/ml). Fourteen of these 19 strains contained nucleotide changes resulting in amino acid substitutions at position 83 in the gyrA protein. Resistant strains selected in vitro did not contain mutations at that position. These findings indicate that resistance to MXF in a majority of cases may be due to amino acid substitution in the gyrA gene.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

Cited by 69 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3