Reassociation of Purified Lipopolysaccharide and Phospholipid of the Bacterial Cell Envelope: Electron Microscopic and Monolayer Studies

Author:

Rothfield L.1,Horne R. W.2

Affiliation:

1. Department of Molecular Biology, Albert Einstein College of Medicine, Yeshiva University, New York, New York 10461

2. Agricultural Research Council Institute of Animal Physiology, Babraham, Cambridge, England

Abstract

Phosphatidyl ethanolamine and lipopolysaccharide were extracted and purified from the cell envelope fractions of Escherichia coli and Salmonella typhimurium . The two components were studied separately and after recombination, by use of electron microscopy and monolayer techniques, and by measuring their ability to participate in the enzyme-catalyzed uridine diphosphate-galactose:lipopolysaccharide α, 3 galactosyl transferase reaction, which requires a lipopolysaccharide-phospholipid complex as substrate. Electron microscopy of purified lipopolysaccharide showed a uniform population of hollow spheres, with each sphere bounded by a continuous leaflet. The diameter of the spheres was approximately 500 to 1,000 A, and the thickness of the enveloping leaflet was approximately 30 A. Phosphatidyl ethanolamine showed a regular lamellar structure. When lipopolysaccharide and phosphatidyl ethanolamine were mixed under conditions of heating and slow-cooling, the leaflet of the lipopolysaccharide spheroids appeared to extend directly into the phosphatidyl ethanolamine structure, with continuity between the two leaflets. Various stages of penetration were seen. At high concentrations of lipopolysaccharide, there were disruptive changes in phosphatidyl ethanolamine leaflets similar to those seen when saponin acts on cholesterol-lecithin leaflets. Monolayer experiments indicated that lipopolysaccharide penetrated a monomolecular film of phosphatidyl ethanolamine at an air-water interface, as revealed by an increase in surface pressure. The results indicate that a common leaflet structure containing lipopolysaccharide and phosphatidyl ethanolamine may be formed in vitro, and suggest that a similar leaflet may exist in the intact bacterial cell envelope.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 100 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3